

FOV4 Developments

Christopher Saski Clemson University 2024 Breeders Tour

Overview of the Systems Genetics Lab

Linking Genome Structure with Function: Resilience, Trait Genetics, Crop Improvement

BASIC RESEARCH – (Disciplinary domains: Genomics, Genetics, Computational Biology, Genome Engineering, Evolutionary Genomics, Synthetic Biology)

- Genetic Architecture and Genomic Mechanisms Causal alleles underlying simple and quantitative traits
- Functional Genomics and Genome Engineering Trait enhancement and engineering

<u>APPLIED RESEARCH</u> – (Plant Breeding, Cropping Systems, Agricultural improvement)

 Translating Basic Science to Application – DNA Informed breeding, engineered crops, new weed management strategies and agricultural practices

Overview of the Systems Genetics Lab

Linking genome structure with function: Resilience, trait genetics, crop & agricultural improvement

Outline

Primary disease threat to cotton (Fusarium wilt)

Unique FOV4 screening nursery

Genetic mapping for FOV4 resistance in upland

Transcriptomics underlying resistance in pima

Current work & future directions

Fusarium wilt in the US

✓ Fusarium oxysporum f. sp. vasinfectum
✓ First ID 1892 in Alabama
✓ Inoculum dependent
✓ No nematodes, no symptoms

Fusarium oxysporum f. sp. *vasinfectum* race 4

- Typical FOV infections of cotton are preceded by a wound
 - Nematode FOV disease complex
 - No nematode, no problems
- First identified in California in 1997 (Olvey)
- FOV4 is nematode independent
- High potential for severe economic damage
- Chlamydospores lie dormant for decades
- Survives as saprophyte

FOV4 hyphae

This Photo by Unknown Author is licensed under CC BY-SA

Fusarium wilt symptoms

- Variable based on inoculum density, planting date, pathogen biotype virulence, and age of the host plant
- Seeds germinating in presence of FOV4 spores may die before emergence or immediately after
 - Often confused with damping-off
- Older seedlings display cotyledon drop, leaf chlorosis and necrosis, wilting
- Mature plants are similar and can also show severe stunting and vascular staining

FOV4 consequences

- Field Abandonment
- San Joaquin Valley, California
 - 775,000 down to 40,000 productive acres between 2000 and 2020
- Responsible for 95% stand loss in California from 2007 to 2019
- >50% yield loss in moderately infested fields

Pima breeding efforts

- Early 2000s initial FOV4 breeding focused in pima cotton
 SUCCESS
- Attempts to introgress this resistance from pima to upland have failed
- Identifying resistant upland germplasm is required

https://www.sjvqualitycotton.com/

If FOV4 was first identified 20+ years ago, and resistant pima cultivars are developed, why are we still working on upland resistance in 2024?

Upland breeding efforts

- 20 years of research
 - 30+ claims of resistance
 - All fail in high inoculum-load field

• O&A Enterprises

- FOV4 hot site El Paso, TX
- Large, diverse germplasm screens
- Over 10,000 genotypes
- Public releases (O&A Enterprises)
 - U1, U2, U3, and U4

El Paso FOV4 screening Susceptible nursery

Variety

Resistant Variety

Robust & unique field design

56	Mod		Tol		Mod		Mod			Tol		Mod		Tol		Mod	56
55	DJ-6-45		DJ-6-94		DJ-6-142		DJ-6-187			Mod		DJ-6-284		DJ-8-41		DJ-8-89	55
54	DJ-6-44		DJ-6-93		DJ-6-141		DJ-6-186			DJ-6-236		DJ-6-283		DJ-8-40		Tol	54
53	DJ-6-43		DJ-6-92		DJ-6-140		DJ-6-185			DJ-6-235		DJ-6-282		Mod		DJ-8-88	53
52	Mod		DJ-6-91		DJ-6-139		DJ-6-184			DJ-6-234		DJ-6-281		DJ-8-39		DJ-8-87	52
51	DJ-6-42		DJ-6-90		DJ-6-138		DJ-6-183			DJ-6-233		Tol		DJ-8-38		DJ-8-86	51
50	DJ-6-41		DJ-6-89		Mod		DJ-6-182			DJ-6-232		DJ-6-280		DJ-8-37		DJ-8-85	50
49	DJ-6-40		DJ-6-88		DJ-6-137		DJ-6-181			DJ-6-231		DJ-6-279		DJ-8-36		DJ-8-84	49
48	DJ-6-39		DJ-6-87		DJ-6-136		DJ-6-180			DJ-6-230		DJ-6-278		DJ-8-35		DJ-8-83	48
47	DJ-6-38		Mod		DJ-6-135		DJ-6-179			DJ-6-229		DJ-6-277		DJ-8-34		DJ-8-82	47
46	DJ-6-37		DJ-6-86		DJ-6-134		DJ-6-178			Tol		DJ-6-276		DJ-8-33		DJ-8-81	46
45	DJ-6-36		DJ-6-85		DJ-6-133		Tol			DJ-6-228		DJ-6-275		DJ-8-32		DJ-8-80	45
44	DJ-6-35		DJ-6-84		DJ-6-132		DJ-6-177			DJ-6-227		DJ-6-274		Tol		DJ-8-79	44
43	DJ-6-34		DJ-6-83		DJ-6-131		DJ-6-176			DJ-6-226		DJ-6-273		DJ-8-31		DJ-8-78	43
42	DJ-6-33		DJ-6-82		DJ-6-130		DJ-6-175			DJ-6-225		DJ-6-272		DJ-8-30		Mod	42
41	Tol		DJ-6-81		DJ-6-129		DJ-6-174			DJ-6-224		DJ-6-271		DJ-8-29		DJ-8-77	41
40	DJ-6-32		DJ-6-80		DJ-6-128		CSX8308			DJ-6-223		Mod		DJ-8-28		DJ-8-76	40
39	DJ-6-31		DJ-6-79		Tol		GA 2016016			DJ-6-222		DJ-6-270		DJ-8-27		DJ-8-75	39
38	DJ-6-30		DJ-6-78		DJ-6-127		SA-3208			DJ-6-221		DJ-6-269		DJ-8-26		DJ-8-74	38
37	DJ-6-29		Tol		DJ-6-126		DJ-6-173			DJ-6-220		DJ-6-268		DJ-8-25		DJ-8-73	37
36	DJ-6-28		DJ-6-77		DJ-6-125		DJ-6-172			DJ-6-219		DJ-6-267		Mod		DJ-8-72	36
35	DJ-6-27	s	DJ-6-76	s	DJ-6-124	s	Mod	s	s	DJ-6-218	s	DJ-6-266	S	DJ-8-24	S	DJ-8-71	35
34	DJ-6-26	U	DJ-6-75	U	DJ-6-123	U	DJ-6-171	U	U	DJ-6-217	U	DJ-6-265	U	DJ-8-23	U	DJ-8-70	34
33	DJ-6-25	s	DJ-6-74	s	Mod	S	DJ-6-170	S	s	DJ-6-216	s	DJ-6-264	S	DJ-8-22	S	DJ-8-69	33
32	DJ-6-24	С	DJ-6-73	С	DJ-6-122	С	DJ-6-169	С	с	DJ-6-215	С	DJ-6-263	С	DJ-8-21	С	DJ-8-68	32
31	DJ-6-23	E	DJ-6-72	E	DJ-6-121	E	DJ-6-168	E	E	DJ-6-214	E	Tol	E	DJ-8-20	E	DJ-8-67	31
30	Mod	Ρ	DJ-6-71	Ρ	DJ-6-120	Ρ	DJ-6-167	Ρ	Ρ	DJ-6-213	Ρ	DJ-6-262	Ρ	DJ-8-19	Ρ	DJ-8-66	30
29	DJ-6-22	т	DJ-6-70	Т	DJ-6-119	Т	DJ-6-166	т	т	DJ-6-212	т	DJ-6-261	т	DJ-8-18	т	Tol	29
28	DJ-6-21	1	DJ-6-69	1	DJ-6-118	1	DJ-6-165	1	1	Mod	1	DJ-6-260	1	DJ-8-17	1	DJ-8-65	28
27	DJ-6-20	в	DJ-6-68	в	DJ-6-117	в	DJ-6-164	в	в	DJ-6-211	В	DJ-6-259	В	DJ-8-16	В	DJ-8-64	27
26	DJ-6-19	L	DJ-6-67	L	DJ-6-116	L	Tol	L	L	DJ-6-210	L	DJ-6-258	L	DJ-8-15	L	DJ-8-63	26
25	DJ-6-18	E	Mod	E	DJ-6-115	E	DJ-6-163	E	E	DJ-6-209	E	DJ-6-257	E	DJ-8-14	E	DJ-8-62	25
24	DJ-6-17		D1-6-66		DJ-6-114		DJ-6-162			DJ-6-208		DJ-6-256		DJ-8-13		DJ-8-61	24
23	DJ-6-16		D1-6-65		DJ-6-113		DJ-6-161			DJ-6-207		DJ-6-255		DJ-8-12		DJ-8-60	23
22	DJ-6-15		DJ-6-64		DJ-6-112		DJ-6-160			DJ-6-206		DJ-6-254		101		D1-8-59	22
21	DJ-6-14		D1-0-03		DJ-0-111		DJ-6-159			DJ-6-205		DJ-0-253		C5X8308		01-8-58	21
20	DJ-6-13		DJ-0-02		10I		DJ-0-158			DJ-6-204		DJ-6-252		GA 2016016		D1-8-57	20
19	DJ-6-12		D1-6-61		DJ-6-110		DJ-6-157			DJ-6-203		DJ-6-251		SA-3208		D1-8-56	19
17	Tel.		D1-6-60		DJ-6-109		DI-6-155			DJ-6-202		Mod		DJ-8-11		D1-8-55	17
16	DI-6-10		DI-6-59		DJ-6-103		Mod			DI-6-201		DI-6-249		DI-8-9		DI-8-53	16
15	DI-6-9		DI-6-57		DI-6-106		DI-6-154			DI-6-199		DI-6-248		DI-8-8		DI-8-52	15
14	DI-6-8		DI-6-56		DI-6-105		DI-6-153			Tol		DI-6-247		DI-8-7		DI-8-51	14
13	DI-6-7		DI-6-55		DJ-6-104		DI-6-152			DJ-6-198		DI-6-246		DI-8-6		Mod	13
12	DJ-6-6		Tol		DJ-6-103		DJ-6-151			DJ-6-197		DJ-6-245		DJ-8-5		DJ-8-50	12
11	DI-6-5		DJ-6-54		DJ-6-102		DJ-6-150			DJ-6-196		DI-6-244		DI-8-4		DI-8-49	11
10	DJ-6-4		DJ-6-53		DJ-6-101		DJ-6-149			DJ-6-195		DJ-6-243		Mod		DJ-8-48	10
9	DJ-6-3		DJ-6-52		DJ-6-100		DJ-6-148			DJ-6-194		Tol		DJ-8-3		DJ-8-47	9
8	DJ-6-2		DJ-6-51		Mod		DJ-6-147			DJ-6-193		DJ-6-242		DJ-8-2		DJ-8-46	8
7	DJ-6-1		DJ-6-50		DJ-6-99		DJ-6-146			DJ-6-192		DJ-6-241		DJ-8-1		DJ-8-45	7
6	CSX8308		DJ-6-49		DJ-6-98		DJ-6-145			DJ-6-191		DJ-6-240		DJ-6-288		Tol	6
5	Mod		DJ-6-48		DJ-6-97		DJ-6-144			DJ-6-190		DJ-6-239		DJ-6-287		DJ-8-44	5
4	GA 2016016		DJ-6-47		DJ-6-96		Tol			DJ-6-189		DJ-6-238		DJ-6-286		DJ-8-43	4
3	SA-3208		DJ-6-46		DJ-6-95		DJ-6-143			DJ-6-188		DJ-6-237		DJ-6-285		DJ-8-42	3
2	Mod		Tol		Mod		Tol			Mod		Tol		Mod		Tol	2
1	Tol		Mod		Tol		Mod			Tol		Mod		Tol		Mod	1
	Row 37		Row 38		Row 39		Row 40			Row 41		Row 42		Row 43		Row 44	

6		3	4		4		2				6		5		6				4		6	- 3	3		4
				2								3							_	3		3		5	
-	-	-	-		-		-	-	-	-	-	-	-			-		-	-		2	-		-	-
3	-	-			-	3		3	-	-	⊢	-	-	2		5			-	3	2	2	3	3	-
-		-				\vdash		-			F					-				-		-		-	
_		4								5								5							
																					1		1		
																				3		3		1	
-	3	_		_	_				5	-	-			_		-	4				-			_	-
-	-	-		-	-	\vdash		-	-	-	⊢	-	-	-		-					2	-		-	-
-				-							\vdash									5	-	5	3	6	-
-					-				F		F									-		-			F
							5																		
																					4		5		
_					3								5							4		2		5	
2		_								_	-	-		_										_	-
-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	5	-		-	-			-		_	10
-	-	-			-	5	-	-	-	-	\vdash	3	-	-		-		-	-	5	4	4	5	2	5
-			3		-				-	-	3	-		-					5			1			-
											-								-						
		2								3								4			4		4		
														6						5		3		3	
																_									_
3	-	_		-	-		-	5	-	-	-	-	_	-		3		-	-		-	_		-	-
-	-	-		1	-		-	-	-	-	-	-	-	-		-		-	-		3		5		-
-		-		3	-				-		⊢	-	-			-			-	3		2		4	-
-									-		\vdash														
	3								6								3				5		2		
																				3		5		2	
_		_			_					_		5													
_	-	_		_	-		-		-		-	-	_			-		-	_		-	_	-	_	-
-		-			-	-	-	-	-		⊢	-	_			-					3		3	10	-
-	-	-		-	-	\vdash	-	-	-	-	\vdash		-	-		-			-	3	-	4		3	-
		-			5				-		F		2			-									
																					3		3		
			1								3								3	3		3		4	
		_							_				_			_			_			_	-		_
		_			-				-	-	-			-		-								-	14
-		-		-	-		5	-	-	-	-	-	-	-	3	-		-	-	2	4	2	3		4
-		-			-					-	-		-	-		-				4				-	-
						4								3				-							
														-							3		5		3
		5								5								4		2		3		5	
		-																1				1			Ĺ
		_			-		-		-	-	-	-		-				-	-			-	-	_	
4	-	-	-		-	\vdash	-	3	-	-	-	-	-	-	H	4	-	-	-	2	5	6	5	5	4
		-			-			-	-							-				-	6	9	5	3	6
4		5		5		5		4		5		5		5		6		4		3	Ť	5	-	6	F
	5		3		б		6		7		6		6		3		5		5		6		6		5

Rating	Plant Survival
0	0%
1	1-10%
2	11-20%
3	21-30%
4	31-40%
5	41-50%
6	51-60%
7	61-70%
8	71-80%
9	81-90%
10	91-100%

Geostatistical techniques to account for the heterogeneity of Fusarium wilt inoculum distribution in upland cotton field screening studies

Incorporating geostatistical techniques to improve phenotyping

Robust & unique field design

56	Mod		Tol		Mod		Mod			Tol		Mod		Tol		Mod	56
55	DJ-6-45		DJ-6-94		DJ-6-142		DJ-6-187			Mod		DJ-6-284		DJ-8-41		DJ-8-89	55
54	DJ-6-44		DJ-6-93		DJ-6-141		DJ-6-186			DJ-6-236		DJ-6-283		DJ-8-40		Tol	54
53	DJ-6-43		DJ-6-92		DJ-6-140		DJ-6-185			DJ-6-235		DJ-6-282		Mod		DJ-8-88	53
52	Mod		DJ-6-91		DJ-6-139		DJ-6-184			DJ-6-234		DJ-6-281		DJ-8-39		DJ-8-87	52
51	DJ-6-42		DJ-6-90		DJ-6-138		DJ-6-183			DJ-6-233		Tol		DJ-8-38		DJ-8-86	51
50	DJ-6-41		DJ-6-89		Mod		DJ-6-182			DJ-6-232		DJ-6-280		DJ-8-37		DJ-8-85	50
49	DJ-6-40		DJ-6-88		DJ-6-137		DJ-6-181			DJ-6-231		DJ-6-279		DJ-8-36		DJ-8-84	49
48	DJ-6-39		DJ-6-87		DJ-6-136		DJ-6-180			DJ-6-230		DJ-6-278		DJ-8-35		DJ-8-83	48
47	DJ-6-38		Mod		DJ-6-135		DJ-6-179			DJ-6-229		DJ-6-277		DJ-8-34		DJ-8-82	47
46	DJ-6-37		DJ-6-86		DJ-6-134		DJ-6-178			Tol		DJ-6-276		DJ-8-33		DJ-8-81	46
45	DJ-6-36		DJ-6-85		DJ-6-133		Tol			DJ-6-228		DJ-6-275		DJ-8-32		DJ-8-80	45
44	DJ-6-35		DJ-6-84		DJ-6-132		DJ-6-177			DJ-6-227		DJ-6-274		Tol		DJ-8-79	44
43	DJ-6-34		DJ-6-83		DJ-6-131		DJ-6-176			DJ-6-226		DJ-6-273		DJ-8-31		DJ-8-78	43
42	DJ-6-33		DJ-6-82		DJ-6-130		DJ-6-175			DJ-6-225		DJ-6-272		DJ-8-30		Mod	42
41	Tol		DJ-6-81		DJ-6-129		DJ-6-174			DJ-6-224		DJ-6-271		DJ-8-29		DJ-8-77	41
40	DJ-6-32		DJ-6-80		DJ-6-128		CSX8308			DJ-6-223		Mod		DJ-8-28		DJ-8-76	40
39	DJ-6-31		DJ-6-79		Tol		GA 2016016			DJ-6-222		DJ-6-270		DJ-8-27		DJ-8-75	39
38	DJ-6-30		DJ-6-78		DJ-6-127		SA-3208			DJ-6-221		DJ-6-269		DJ-8-26		DJ-8-74	38
37	DJ-6-29		Tol		DJ-6-126		DJ-6-173			DJ-6-220		DJ-6-268		DJ-8-25		DJ-8-73	37
36	DJ-6-28		DJ-6-77		DJ-6-125		DJ-6-172			DJ-6-219		DJ-6-267		Mod		DJ-8-72	36
35	DJ-6-27	s	DJ-6-76	s	DJ-6-124	s	Mod	s	s	DJ-6-218	s	DJ-6-266	S	DJ-8-24	S	DJ-8-71	35
34	DJ-6-26	U	DJ-6-75	U	DJ-6-123	U	DJ-6-171	U	U	DJ-6-217	U	DJ-6-265	U	DJ-8-23	U	DJ-8-70	34
33	DJ-6-25	s	DJ-6-74	s	Mod	S	DJ-6-170	S	s	DJ-6-216	s	DJ-6-264	S	DJ-8-22	S	DJ-8-69	33
32	DJ-6-24	С	DJ-6-73	С	DJ-6-122	С	DJ-6-169	С	с	DJ-6-215	С	DJ-6-263	С	DJ-8-21	С	DJ-8-68	32
31	DJ-6-23	E	DJ-6-72	E	DJ-6-121	E	DJ-6-168	E	E	DJ-6-214	E	Tol	E	DJ-8-20	E	DJ-8-67	31
30	Mod	Ρ	DJ-6-71	Ρ	DJ-6-120	Ρ	DJ-6-167	Ρ	Ρ	DJ-6-213	Ρ	DJ-6-262	Ρ	DJ-8-19	Ρ	DJ-8-66	30
29	DJ-6-22	т	DJ-6-70	Т	DJ-6-119	Т	DJ-6-166	т	т	DJ-6-212	т	DJ-6-261	т	DJ-8-18	т	Tol	29
28	DJ-6-21	1	DJ-6-69	1	DJ-6-118	1	DJ-6-165	1	1	Mod	1	DJ-6-260	1	DJ-8-17	1	DJ-8-65	28
27	DJ-6-20	в	DJ-6-68	в	DJ-6-117	В	DJ-6-164	в	в	DJ-6-211	В	DJ-6-259	В	DJ-8-16	В	DJ-8-64	27
26	DJ-6-19	L	DJ-6-67	L	DJ-6-116	L	Tol	L	L	DJ-6-210	L	DJ-6-258	L	DJ-8-15	L	DJ-8-63	26
25	DJ-6-18	E	Mod	E	DJ-6-115	E	DJ-6-163	E	E	DJ-6-209	E	DJ-6-257	E	DJ-8-14	E	DJ-8-62	25
24	DJ-6-17		D1-6-66		DJ-6-114		DJ-6-162			DJ-6-208		DJ-6-256		DJ-8-13		DJ-8-61	24
23	DJ-6-16		D1-6-65		DJ-6-113		DJ-6-161			DJ-6-207		DJ-6-255		DJ-8-12		DJ-8-60	23
22	DJ-6-15		DJ-6-64		DJ-6-112		DJ-6-160			DJ-6-206		DJ-6-254		101		D1-8-59	22
21	DJ-6-14		D1-0-03		DJ-0-111		DJ-6-159			DJ-6-205		DJ-0-253		C5X8308		01-8-58	21
20	DJ-6-13		DJ-0-02		10I		DJ-0-158			DJ-6-204		DJ-6-252		GA 2016016		D1-8-57	20
19	DJ-6-12		D1-6-61		DJ-6-110		DJ-6-157			DJ-6-203		DJ-6-251		SA-3208		D1-8-56	19
17	Tel.		D1-6-60		DJ-6-109		DI-6-155			DJ-6-202		Mod		DJ-8-11		D1-8-55	17
16	DI-6-10		DI-6-59		DJ-6-103		Mod			DI-6-201		DI-6-249		DI-8-9		DI-8-53	16
15	DI-6-9		DI-6-57		DI-6-106		DI-6-154			DI-6-199		DI-6-248		DI-8-8		DI-8-52	15
14	DI-6-8		DI-6-56		DI-6-105		DI-6-153			Tol		DI-6-247		DI-8-7		DI-8-51	14
13	DI-6-7		DI-6-55		DJ-6-104		DI-6-152			DJ-6-198		DI-6-246		DI-8-6		Mod	13
12	DJ-6-6		Tol		DJ-6-103		DJ-6-151			DJ-6-197		DJ-6-245		DJ-8-5		DJ-8-50	12
11	DI-6-5		DJ-6-54		DJ-6-102		DJ-6-150			DJ-6-196		DI-6-244		DI-8-4		DI-8-49	11
10	DJ-6-4		DJ-6-53		DJ-6-101		DJ-6-149			DJ-6-195		DJ-6-243		Mod		DJ-8-48	10
9	DJ-6-3		DJ-6-52		DJ-6-100		DJ-6-148			DJ-6-194		Tol		DJ-8-3		DJ-8-47	9
8	DJ-6-2		DJ-6-51		Mod		DJ-6-147			DJ-6-193		DJ-6-242		DJ-8-2		DJ-8-46	8
7	DJ-6-1		DJ-6-50		DJ-6-99		DJ-6-146			DJ-6-192		DJ-6-241		DJ-8-1		DJ-8-45	7
6	CSX8308		DJ-6-49		DJ-6-98		DJ-6-145			DJ-6-191		DJ-6-240		DJ-6-288		Tol	6
5	Mod		DJ-6-48		DJ-6-97		DJ-6-144			DJ-6-190		DJ-6-239		DJ-6-287		DJ-8-44	5
4	GA 2016016		DJ-6-47		DJ-6-96		Tol			DJ-6-189		DJ-6-238		DJ-6-286		DJ-8-43	4
3	SA-3208		DJ-6-46		DJ-6-95		DJ-6-143			DJ-6-188		DJ-6-237		DJ-6-285		DJ-8-42	3
2	Mod		Tol		Mod		Tol			Mod		Tol		Mod		Tol	2
1	Tol		Mod		Tol		Mod			Tol		Mod		Tol		Mod	1
	Row 37		Row 38		Row 39		Row 40			Row 41		Row 42		Row 43		Row 44	

6		3	4		4		2				6		5		6				4		6	- 3	3		4
				2								3							_	3		3		5	
1	-	-	-		-		-	-	-	-	-	-	-	F		-		-	-		2	-		-	-
3	-	-			-	3		3	-	-	⊢	-	-	2		5			-	3	2	2	3	3	-
-		-				\vdash		-			F					-				-		-		-	
_		4								5								5							
																					1		1		
																				3		3		1	
-	3	_		_	_				5	-	-			_		-	4				-			_	-
-	-	-		-	-	\vdash			-	-	⊢	-	-	-		-					2	-		-	-
-				-							\vdash									5	-	5	3	6	-
-					-				F		F									-		-			F
							5																		
																					4		5		
_					3								5							4		2		5	
2		_								_	-	-		_											-
-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	5	-		-	-			-		-	10
-	-	-			-	5	-	-	-	-	\vdash	3	-	-		-		-	-	5	4	4	5	2	5
-			3		-				-	-	3	-		-					5			1			-
											-								-						
		2								3								4			4		4		
														6						5		3		3	
																_									_
3	-	_		-	-		-	5	-	-	-	-	_	-		3		-	-		-	_		-	-
-	-	-		1	-		-	-	-	-	-	-	-	-		-		-	-		3		5		-
-		-		3	-	\vdash			-		⊢	-	-			-			-	3		2		4	-
-									-		\vdash														
	3								6								3				5		2		
																				3		5		2	
_		_			_					_		5													
_	-	_		_	-		-		-		-	-	_			-		-	_		-	_	-	_	-
-		-			-	-	-	-	-		⊢	-	_			-			-		3		3	10	-
-	-	-		-	-	\vdash	-	-	-	-	\vdash		-	-		-			-	3	-	4		3	-
		-			5				-		F		2			-									
																					3		3		
			1								3								3	3		3		4	
		_							_				_			_			_			_	-		_
		_			-				-	-	-			-		-								-	14
-		-		-	-		5	-	-	-	-	-	-	-	3	-		-	-	2	4	2	3		4
-		-			-					-	-		-	-		-				4				-	-
						4								3				-							
														-							3		5		3
		5								5								4		2		3		5	
		-																1				1			Ĺ
		_			-		-		-	-	-	-		-				-	-			-	-	_	
4	-	-	-		-	\vdash	-	3	-	-	-	-	-	-	H	4	-	-	-	2	5	6	5	5	4
		-			-			-	-							-				-	6	9	5	3	6
4		5		5		5		4		5		5		5		6		4		3		5	-	6	F
	5		3		б		6		7		6		6		3		5		5		6		6		5

Rating	Plant Survival
0	0%
1	1-10%
2	11-20%
3	21-30%
4	31-40%
5	41-50%
6	51-60%
7	61-70%
8	71-80%
9	81-90%
10	91-100%

Kriging interpolation

Parris et al. (2023) Crop Science, https://doi.org/10.1002/csc2.20961

Can we use math to sub-select from an early generation population?

FOV4 QTL discovery

Reference grade whole genome sequences

Adjusted with inoculum distribution info

Whole genome sequencing of F3s

Gupta, M., Praveen, A. (2019). Quantitative Trait Loci Mapping of Heavy Metal Accumulation and Resistance in Crop Plants.

Unique genomic resources

FOV4 Susceptible

FOV4 Resistant

Skim sequencing F3 segregants

- 3-5X sequence coverage of F3
- Selected SNPs between parents that were in homozygous states
- Filtered for read depth, linkage disequilibrium, and minor allele frequency
- Generated 1300 SNP-based markers customized for our population

Two major QTLs significantly associated with FOV4 resistance

AB

QTL on chromosome D03

AA

1.3 Megabases102 genes

F.

Parris et al. (2024) In Review

BB

D03 QTL gene discovery

											Most	Resista	nt F3s			
CHROM	POS	REF	ALT	EFF[*].GENE	Gene IPS	CSX8308	U1	DJ8-22	DJ8-65	DJ8-64	DJ8-31	DJ8-66	DJ8-72	DJ8-80	DJ8-57	DJ8-75
D03	705170	A	G	GhCSX8308.D03G011500	#N/A	BB	AA	AA	AA	AA	./.	BB	AB	BB	AA	AB
D03	806292	Т	С	GhCSX8308.D03G012600	Oxidoreductase-like protein, N-terminal	BB	AA	AA	AA	AA	BB	BB	AA	AB	AA	AB
D03	813094	G	С	GhCSX8308.D03G012700	Domain of unknown function (DUF702)	BB	AA	AA	AA	AA	BB	BB	AB	./.	AA	AB
D03	844501	A	G	GhCSX8308.D03G012900	Ribosomal RNA adenine dimethylase	BB	AA	AA	AA	./.	AB	BB	AB	AB	AA	AB
D03	1045210	A	G	GhCSX8308.D03G015700	#N/A	BB	AA	AA	AA	AA	BB	BB	AB	AA	AA	AB
D03	1046449	т	A	GhCSX8308.D03G015700	#N/A	BB	AA	AA	AA	./.	./.	./.	AA	AB	AA	./.
D03	1069455	G	т	GhCSX8308.D03G015900	Clathrin adaptor complex small chain	BB	AA	AA	AA	AA	BB	BB	AB	AB	AA	AB
D03	1071112	A	G	GhCSX8308.D03G016000	Lysine methyltransferase	BB	AA	AA	AA	AA	BB	BB	./.	BB	./.	AB
D03	1074897	С	т	GhCSX8308.D03G016100	CNH domain	BB	AA	AA	AA	./.	BB	BB	./.	BB	AA	AB
D03	1075536	A	т	GhCSX8308.D03G016100	CNH domain	BB	AA	AA	AA	AA	BB	BB	AB	./.	./.	./.
D03	1077111	G	A	GhCSX8308.D03G016100	CNH domain	BB	AA	AA	AA	AA	BB	BB	AB	AB	AA	BB
D03	1101124	С	т	GhCSX8308.D03G016400	GRAS domain family	BB	AA	AA	AA	AA	BB	BB	AB	AB	AA	AB
D03	1722782	Bin Marker	5.084		#N/A											
D03	2264277	Т	G	GhCSX8308.D03G026100	Ligand-gated ion channel	BB	AA	AA	AA	AA	AB	AA	AA	AA	AA	AB
D03	2387216	Bin Marker	4.828375		#N/A											
D03	2470563	Α	т	GhCSX8308.D03G027800	Plant zinc cluster domain	BB	AA	BB	BB	BB	BB	BB	BB	BB	вв	BB
D03	2526112	G	т	GhCSX8308.D03G028200	Cyclin, N-terminal domain	BB	AA	./.	./.	BB	./.	./.	BB	./.	./.	./.
D03	2739208	A	т	GhCSX8308.D03G030300	Protein kinase domain	BB	AA	BB	BB	BB	BB	BB	BB	BB	BB	BB
D03	2896016	G	т	GhCSX8308.D03G031300	GRAS domain family	BB	AA	BB	BB	AA	AB	./.	./.	AB	./.	AB
D03	2902573	С	т	GhCSX8308.D03G031400	Glycosyl hydrolases family 43	BB	AA	AB	BB	AA	AA	BB	AA	./.	./.	AA
D03	2914819	А	G	GhCSX8308.D03G031600	Myb-like DNA-binding domain	BB	AA	AB	BB	AA	AB	BB	AA	AB	BB	AB
D03	2937240	A	G	GhCSX8308.D03G031800	RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)	BB	AA	BB	BB	AA	AA	./.	./.	4.	./.	./.

Plant glutamate receptors

Mol Cell. 2021 Aug 5; 81(15): 3216-3226.e8.

ADVANCED SCIENCE

Adv Sci (Weinh), 2021 Apr; 8(7): 2002723. Published online 2021 Feb 19. doi: <u>10.1002/advs.202002723</u> PMCID: PMC8025038 PMID: <u>33854882</u>

Open Access

A Single-Nucleotide Mutation in a GLUTAMATE RECEPTOR-LIKE Gene Confers Resistance to Fusarium Wilt in *Gossypium hirsutum*

Shiming Liu, ¹ Xiaojun Zhang, ¹ Shenghua Xiao, ¹ Jun Ma, ² Weijun Shi, ² Tao Qin, ¹ Hui Xi, ³ Xinhui Nie, ³ Chunyuan You, ⁴ Zheng Xu, ¹ Tianyi Wang, ¹ Yujing Wang, ¹ Zhennan Zhang, ¹ Jianying Li, ¹ Jie Kong, ² Alifu Aierxi, ² Yu Yu, ⁵ Keith Lindsey, ⁶ Steven J. Klosterman, ⁷ Xianlong Zhang, ¹ and Longfu Zhu^{№ 1} b

FOV7 in China

D03 GRL contribution to FOV7 and FOV4 resistance and cytosolic calcium influx

Parris et al. (2024) In Review

U1

CSX8308

Jin668

QTL on chromosome A02

3.3 Megabases163 genes

A02 QTL gene discovery

Most Resistant F3s

CHROM	POS	REF	ALT	EFF[*].GENE	Gene IPS	CSX8308	U1	DJ8-22	DJ8-65	DJ8-64	DJ8-31	DJ8-66	DJ8-72	DJ8-80	DJ8-57	DJ8-75
A02	102733398	Bin Marker	4.585067		#N/A											
A02	102814191	l c	т	GhCSX8308.A02G175700	BED zinc finger	BB	AA	AB	AB	BB	./.	./.	AA	AA	AA	AA
A02	102814658	т	с	GhCSX8308.A02G175700	BED zinc finger	BB	AA	AA	AB	BB	./.	AA	./.	AA	AA	AA
A02	102832548	A	G	GhCSX8308.A02G175800	SCO1/SenC	BB	AA	AB	AB	BB	./.	./.	AA	AA	AA	AA
402	103342248	Bin Marker	4.867675		#N/A				·							
A02	103830254	L C	G	GhCSX8308.A02G180300	#N/A	вв	AA	AB	AA	BB	AB	AA	AA	AA	AA	AA
402	103830935	G	т	GhCSX8308.A02G180300	#N/A	вв	AA	AB	AA	вв	AB	AA	AA	АА	AA	AA
A02	103832224	Т	G	GhCSX8308.A02G180300	#N/A	вв	AA	AB	AA	вв	AB	АА	AA	АА	AA	AA
A02	103895702	Bin MArker	6.173494		#N/A											
A02	104081673	Bin Marker	6.806055		#N/A											
A02	104281660	Bin Marker	6.206119		#N/A											
AO2	104409537	/ A	G	GhCSX8308.A02G183400	Domain of unknown function (DUF4228)	BB	AA	AA	AA	BB	./.	AA	AA	AA	AA	AA
A02	104414730	т	С	GhCSX8308.A02G183500	RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain)	BB	AA	AB	AA	BB	AB	AA	AA	AA	AA	AA
A02	104489789	Bin Marker	6.070021		#N/A											
A02	104749364	Т	С	GhCSX8308.A02G186500	#N/A	BB	AA	AB	AA	BB	AB	AA	AA	AA	AA	AB
A02	104762907	G	A	GhCSX8308.A02G186600	U-box domain	BB	AA	AA	AA	./.	AB	AA	AA	AA	./.	BB
A02	104762984	L C	т	GhCSX8308.A02G186600	U-box domain	BB	AA	AA	AA	./.	AB	AA	AA	AA	AA	BB
A02	104775940	G	A	GhCSX8308.A02G186700	Xylanase inhibitor N-terminal	BB	AA	AB	AA	BB	AB	AA	AA	AA	AA	AB
A02	105116741	Т	A	GhCSX8308.A02G189600	Alternative splicing regulator	BB	AA	BB	AA	./.	AA	AA	AA	AA	AA	AB
A02		Del	VVPIG	GhCSX8308.A02G189700	Ligand-gated ion channel	BB	AA	AB	AA	BB	AB	AA	AA	AA	AA	AB
A02	105166646	GWAS	3.291685059			BB	AA	AA	AA	AB	BB	AA	AA	AA	AA	AA
A02	105169427	C C	A	GhCSX8308.A02G189800	Protein of unknown function (DUF1685)	BB	AA	AB	AA	BB	AB	AA	AA	AA	AA	AB
A02	105209034	GWAS	3.317285549			BB	AA	AB	AA	AA	AA	./.	AA	AA	AA	AB
A02	105262394	l C	G	GhCSX8308.A02G190300	Cytochrome P450	BB	AA	AB	AA	AA	AB	./.	AA	AA	AA	AB
A02	105668784	ЧT	А	GhCSX8308.A02G193200	Reticulon	BB	AA	AB	AA	AA	AB	AA	AA	AA	AA	AB
402	106741504	G	A	GhCSX8308.A02G203000	Uncharacterised protein family (UPF0183)	BB	AA	AA	AB	AA	AB	AA	AA	AA	AA	BB
A02	106913248	G	т	GhCSX8308.A02G205700	von Willebrand factor type A domain	BB	AA	AA	AA	./.	AA	AA	AA	AA	./.	BB

Transposon insertion disrupts gene function

Plant glutamate receptors

Mol Cell. 2021 Aug 5; 81(15): 3216–3226.e8.

A02 GLR pore size in U1 is larger

Transcriptomics underlying FOV4 resistance in 'U1'

60

40

20

0

up

down

60

40

20

0

up

down

Potential GRL-mediated mechanisms for FOV4 resistance

Summary

- Geostatistics improves field phenotyping.
- Early generational genetic mapping enhanced by whole genome sequencing can expedite causal gene discovery
- GLRs are a potential new class of R-gene?
- Volumetric calcium influx catalyzes robust defense responses

RNAseq analysis of FOV4 challenge in pima

Collected tissue at 3 time points: 12hai, 24hai, 72hai Extract RNA for RNAseq Identify unique expression in resistant pima

Parris et al. (2023) *Plant Disease*

Induced gene counts

GO enrichment

Biochemical pathway enrichment

Casparian strip-associated DEG abundance

https://www.bio.miami.edu/dana/pix/endodermis_cells.jpg

Potential role of the Casparian strip in the restriction of vascular colonization

Conclusions

- Reactive oxidative bursts underly FOV4 resistance in both species
- Wall off mechanisms play pivotal role in FOV4 resistance in both upland and pima
 - General cell wall fortification
 - Casparian strip fortification provides a biochemical barrier against vascular pathogen invasion
- GLRs are new targets for investigation with providing broad spectrum fungal resistance
 - Targets for transformation
- Calcium signaling

Ongoing Work

Gene Validation

- 1. Knock-in of A02 GRL in Jin668 (D03 exists naturally)
- 2. Knock-out of D03 in Jin668
- 3. Knock-in of A02 in Coker312 & KO of endogenous
- 4. Knock-in of A02 & D03 in Coker312 & KO of endogenous
- 5. Direct editing in U1 (regeneration protocol optimization)

RIL Genotypes (Stephen graphs)

- F8 RIL population (U1 x CSX8308)
- Phenotyped in El Paso, Fall 2023
- Skim sequenced 3-5X (HA)
- >5k quality SNPS

Cotton Cross Section Stain Analysis -Computer Vision

DJ-8-110

Total vascular tissue area: 13351.5 (pixels) Total stained area: 0 Percent area stained: 0%

0% Stain Examples

DJ-8-165

DJ-8-113

DJ-8-115

Total Surface Area Variability

DJ-8-77

Total vascular tissue area: 2895.5

Total vascular tissue area: 33235.5

0% Stained Group (All Individuals)

• DJ-8-110

- DJ-8-113
- DJ-8-115
- DJ-8-118
- DJ-8-145
- DJ-8-148
- DJ-8-15
- DJ-8-151
- DJ-8-143
- DJ-8-155
- DJ-8-163
- DJ-8-165

- DJ-8-173
- DJ-8-175
- DJ-8-181
- DJ-8-193
- DJ-8-207
- DJ-8-216
- DJ-8-217
- DJ-8-222
- DJ-8-236
- DJ-8-240
- DJ-8-246
- DJ-8-260

- DJ-8-266
 - DJ-8-268
 - DJ-8-278
- DJ-8-283
- DJ-8-34
- DJ-8-43
- DJ-8-56
- DJ-8-57
- DJ-8-59DJ-8-61
- DJ-8-63
- DJ-8-71

- DJ-8-72
- DJ-8-75
- DJ-8-76
- DJ-8-77
- DJ-8-80
- DJ-8-87
- DJ-8-89
- DJ-8-95

44 Individuals (~16%) of 282

High Stain Concentration

DJ-8-99

Total vascular tissue area: 11593 Total stained area: 1804.5 Percent area stained: 15.57%

High Stain Examples cont.

DJ-8-65

Total vascular tissue area: 7328 Total stained area: 4823 Percent area stained: 65.82%

Acknowledgements

Collaborators:

Dr. Don Jones (Cotton Inc) Dr. Stephen Parris (Clemson) Dr. Feng Ding (Clemson) Dr. William Bridges (Clemson) Dr. Whitney Wang (Clemson) Dr. Steve Jeffers (Clemson) Dr. John Lovell (HudsonAlpha) Dr. Avinash Sreedasyam (HudsonAlpha) Jeremy Schmutz (HudsonAlpha) Dr. Warwick Stiller (CSIRO) Dr. Iain Wilson (CSIRO)

Funding:

Cotton Inc PhD Fellowship (2019-2023) USDA-NIFA (#2019-67029) USDA-NIFA (#2021-11395)

O&A Enterprises Inc. SOUTH CAROLINA Cotton Board

